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BEHAVIOUR : OXY-COPE VERSUS RETRO-ENE REARRANGEMENTS 
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Summary : From cyclobutanones Sa-j,ten 1,2-divinylcyclobutanot la-j were prepared. A stereochemical effect 

was clearly evidenced : while trans 1,2-divinylcyclobutanols underwent a retro-ene ring opening, the cis isomers 

underwent an oxy-Cope ring enlargement. 

It is well known that cis 1,2-divinylcyclobutanes undergo thermal [3.3] sigmatropic rearrangement into cis. cis 

l,%cyclooctadienes (Cope rearrangement) 1 while the corresponding trans isomers react predominantly via Il.31 

shift process to provide 4-vinylcyclohexenes 2. On the other hand, it has been recently claimed that both cis and 

trans 1,2dialkenylcyclobutanols 1 undergo upon treatment with potassium hydride (KH), anionic oxy-Cope C4 -> 

Cg ring expansion to give 4-cycloocten-l-ones 2 in good yields 3, opening up new ways to cyclooctanoid terpenes 

such as poitediol or dactyl01 4. No products resulting from [1.3] rearrangements were detected in these reactions 3. 

Initial trans - cis isomerization was invoked, as previously suggested by Berson 5, to explain the surprising ring 

expansion of trans 1,2-divinylcyclobutanols 4. Analogously, cis and trans homologous five-, six-, seven-, nine- 

and ten-membered 1,2divinylcycloalkanols have been report4 to provide 5-cycloalken-l-ones resulting from a four 

carbons ring enlargement 6. 

H 
retro - ene oxy - Cope 

We report that contrary to the previous claim 3, the rearrangement of 1,2-dialkenylcyclobutanols 1 is highly 

depending on the cis or trans relationship of the two vinyl groups. We have recently disclosed a regio- and 

stereospecific way to racemic as well as optically active 2alkenylcyciobutanones 7~~ highly competitive with the 

reaction of a-heterosubstituted cyclopropyllithium reagents with an enone or enal 9 or with the cycloaddition of 

vinylketenes to olefins lo. Thus, addition of vinylic organometallic reagents to the readily available silylated l- 

hydroxycyclopropanecarboxaldehyde or (1-hydroxycyclopropyl)methyl ketone 7~~ 1 led to the 

cyclopropylvinylcarbinols 4a-f, which underwent trifluoroborane etherate (BF3-Et20) induced C3 -> C4 ring 

expansion into the 2-vinylcyclobutanones 5a-f in high yields 7,8. Then addition of vinyl- or prop-2- 

enylmagnesium bromides to Sa (R2 = H) and to 5b (R2 = Me) gave the 1,2-dialkenylcyclobutanols la-c. 

However, these four-membered rings appeared to be very labile and underwent upon purification (l.c., SiO2) or on 

standing in C&Do at r.t., ready retro-ene ring opening (also termed j%hydroxy olefin cleavage or [1..5] hydrogen 
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shift) into the 1,6-octadien-3-ones 3a-c respectively, with yields from .%,b superior to 90%. Such a retro-ene 

process had been observed previously but at rather higher temperatures l2 ; thus for instance, when a mixture of 

rruns and cis (ratio 7:3) I-ethyl-2-vinyl-1,2-cyclobutanediols 6 was heated in sealed tube at 220°C for 15 tnn the 

3,6-octanedione 7 (from retro-ene ring opening} and the 2-vinyl-2-ethylcyclobutanone 8 (from pinacolic 

transposition), where obtained (ratio 5:5), while the dione 7 was formed quantitatively upon heating 6 at 315°C 

for 2 h in the gas phase 13.Therefore the lability of the 1,2-divinylcyclobutanols la-c implies a dramatic substituent 

effect on the behaviour of the vinylcyclobutane system (compare the stability of la-c and 6). 
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Vinylation of 5d prepared by BF3-Et20 induced ring expansion of the suitable cyclopropylvinylcarbinol4d 

7~8, provided a 9:l mixture of rruns - Id and cis 2-(prop-1-enyl)-1-vinylcyclobutanol le, which have been separated 

by l.c. (CH2C12/Et20 : 97/3, SiO2). Upon treatment with KH in THF at r.t., or on heating in C6H6 at 4O”C, the 

major tranr isomer Id underwent total retrsene ring opening into the E 1,6-nonadien-3-one 3d, exclusively ; while 

under the same conditions its cis isomer le underwent total oxy-Cope ring expansion into the 6-methyl-4- 

cycloocten-l-one 2e, exclusively in 78% yield. On the other hand, vinylation of Sf, product of ring expansion of 

the cyclopropylvinylcarbinol 4f, gave a 3:7 mixture of tram-lf and cis 2-methyl-2-(prop-1-enyl)-l-vinyl 

cyclobutanol Ig in 83% yield. As recently suggested the presence of the methyl group on the four-membered ring 

favored the stereoproximal to stereodistal ratio 14. Upon standing in C6D6 at r.t. the WURS (distal) 1,2- 

divinylcyclobutanol If underwent slow retro-ene ring opening, totally within one week as monitored by t.l.c., to 

provide the 6-methyl-1,6-nonadien-3-one 3f ; while the cis (proximal) isomer Ig, upon standing in C6D6 at 40°C 

led, to the 4,6-dimethyl-4-cycloocten-l-one 2g l4. 

Addition of phenylethynylmagnesium bromide to 5d yielded a 55 mixture of trans lb and cis 1-(2- 

phenylethynyl)-2-(prop-1-enyl) cyclobutanol li, readily separated by l.c. (CH2C12/Et20 : 97/3, Si%) .Upon 

heating in CgH6 at 50°C for 24 h or upon ireatment with KH in THF at r.t. for 15 mn, the cis cyclubutanol Ii 

underwent ring expansion into the S-methyl-3-phenyl-2,5-cyclooctadien-l-one 2i, exclusively as monitored by 

t.1.c. ; while, unrearranged under these conditions, the rrun~ isomer lh underwent total ring opening into the (2- 

ethynylphenyl) 3-hexenyl ketone 3h on further heating in refluxing benzene for 24 h. 

Addition of 5-methyl-l-cyclopentenyllithium l5 to 2,2-dimethyl-l-siloxycyclopropanecarboxaldehyde (prepared 

from 2,2&nethylsuccinate according to ref. 11) yielded the cyclopropylvinylcarbinol4j and on subsequent BF3- 

Et20 induced ring expansion the cyclobutanone 5j which was treated with prop-2-enylmagnesium bromide to lead 

to the cyclobutanol lj. In spite of many attempts i.e., treatment with KH 3, with (Me3Si)ZNK 16, . . . under 

various conditions, lj did not undergo the anionic oxy-Cope rearrangement into the cyclopentacyclooctenone 2j, a 

suitable precursor of precapnelladiene 17. Once again the expected C4 -z= Cg ring expansion was precluded by the 

truns relationship of the two vinyl groups of lj. 
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